TY - BOOK AU - Anderson,Marlow AU - Feil,Todd TI - A first course in abstract algebra: rings, groups, and fields SN - 1584885157 (alk. paper) AV - QA162 .A53 2005 U1 - 512/.02 22 PY - 2005/// CY - Boca Raton PB - Chapman & Hall/CRC KW - Algebra, Abstract N1 - Includes index; 1; The natural numbers --; 2; The integers --; 3; Modular arithmetic --; 4; Polynomials with rational coefficients --; 5; Factorization of polynomials --; 6; Rings --; 7; Subrings and unity --; 8; Integral domains and fields --; 9; Polynomials over a field --; 10; Associates and irreducibles --; 11; Factorization and ideals --; 12; Principal ideal domains --; 13; Primes and unique factorization --; 14; Polynomials with integer coefficients --; 15; Euclidean domains --; 16; Ring homomorphisms --; 17; The kernel --; 18; Rings of cosets --; 19; The isomorphism theorem for rings --; 20; Maximal and prime ideals --; 21; The Chinese remainder theorem --; 22; Symmetries of figures in the plane --; 23; Symmetries of figures in space --; 24; Abstract groups --; 25; Subgroups --; 26; Cyclic groups --; 27; Group homomorphisms --; 28; Group isomorphisms --; 29; Permutations and Cayley's theorem --; 30; More about permutations --; 31; Cosets and Lagrange's theorem --; 32; Groups of cosets --; 33; The isomorphism theorem for groups --; 34; The alternating groups --; 35; Fundamental theorem for finite Abelian groups --; 36; Solvable groups --; 37; Constructions with compass and straightedge --; 38; Constructibility and quadratic field extensions --; 39; The impossibility of certain constructions --; 40; Vector spaces I --; 41; Vector spaces II --; 42; Field extensions and Kronecker's theorem --; 43; Algebraic field extensions --; 44; Finite extensions and constructibility revisited --; 45; The splitting field --; 46; Finite fields --; 47; Galois groups --; 48; The fundamental theorem of Galois theory --; 49; Solving polynomials by radicals N2 - "As stated in the title, this book is designed for a first course. It requires only a typical calculus sequence as a prerequisite and does not assume any familiarity with linear algebra or complex number."--BOOK JACKET ER -