Amazon cover image
Image from Amazon.com
Image from Google Jackets
Image from OpenLibrary

A first course in abstract algebra : rings, groups, and fields / Marlow Anderson, Todd Feil.

By: Contributor(s): Material type: TextTextPublication details: Boca Raton : Chapman & Hall/CRC, c2005.Edition: 2nd edDescription: xviii, 673 p. : ill. ; 25 cmISBN:
  • 1584885157 (alk. paper)
Subject(s): DDC classification:
  • 512/.02 22
LOC classification:
  • QA162 .A53 2005
Contents:
1. The natural numbers -- 2. The integers -- 3. Modular arithmetic -- 4. Polynomials with rational coefficients -- 5. Factorization of polynomials -- 6. Rings -- 7. Subrings and unity -- 8. Integral domains and fields -- 9. Polynomials over a field -- 10. Associates and irreducibles -- 11. Factorization and ideals -- 12. Principal ideal domains -- 13. Primes and unique factorization -- 14. Polynomials with integer coefficients -- 15. Euclidean domains -- 16. Ring homomorphisms -- 17. The kernel -- 18. Rings of cosets -- 19. The isomorphism theorem for rings -- 20. Maximal and prime ideals -- 21. The Chinese remainder theorem -- 22. Symmetries of figures in the plane -- 23. Symmetries of figures in space -- 24. Abstract groups -- 25. Subgroups -- 26. Cyclic groups -- 27. Group homomorphisms -- 28. Group isomorphisms -- 29. Permutations and Cayley's theorem -- 30. More about permutations -- 31. Cosets and Lagrange's theorem -- 32. Groups of cosets -- 33. The isomorphism theorem for groups -- 34. The alternating groups -- 35. Fundamental theorem for finite Abelian groups -- 36. Solvable groups -- 37. Constructions with compass and straightedge -- 38. Constructibility and quadratic field extensions -- 39. The impossibility of certain constructions -- 40. Vector spaces I -- 41. Vector spaces II -- 42. Field extensions and Kronecker's theorem -- 43. Algebraic field extensions -- 44. Finite extensions and constructibility revisited -- 45. The splitting field -- 46. Finite fields -- 47. Galois groups -- 48. The fundamental theorem of Galois theory -- 49. Solving polynomials by radicals.
Review: "As stated in the title, this book is designed for a first course. It requires only a typical calculus sequence as a prerequisite and does not assume any familiarity with linear algebra or complex number."--BOOK JACKET.
Item type: Book
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Current library Collection Call number Copy number Status Barcode
Bishop Okullu Memorial Library (Limuru Campus) General Circulation Non-fiction QA162 .A53 2005 (Browse shelf(Opens below)) 1 Available 027950
Nairobi Campus General Circulation Non-fiction QA162 .A53 2005 (Browse shelf(Opens below)) 2 Available 027951
Total holds: 0

Includes index.

1. The natural numbers -- 2. The integers -- 3. Modular arithmetic -- 4. Polynomials with rational coefficients -- 5. Factorization of polynomials -- 6. Rings -- 7. Subrings and unity -- 8. Integral domains and fields -- 9. Polynomials over a field -- 10. Associates and irreducibles -- 11. Factorization and ideals -- 12. Principal ideal domains -- 13. Primes and unique factorization -- 14. Polynomials with integer coefficients -- 15. Euclidean domains -- 16. Ring homomorphisms -- 17. The kernel -- 18. Rings of cosets -- 19. The isomorphism theorem for rings -- 20. Maximal and prime ideals -- 21. The Chinese remainder theorem -- 22. Symmetries of figures in the plane -- 23. Symmetries of figures in space -- 24. Abstract groups -- 25. Subgroups -- 26. Cyclic groups -- 27. Group homomorphisms -- 28. Group isomorphisms -- 29. Permutations and Cayley's theorem -- 30. More about permutations -- 31. Cosets and Lagrange's theorem -- 32. Groups of cosets -- 33. The isomorphism theorem for groups -- 34. The alternating groups -- 35. Fundamental theorem for finite Abelian groups -- 36. Solvable groups -- 37. Constructions with compass and straightedge -- 38. Constructibility and quadratic field extensions -- 39. The impossibility of certain constructions -- 40. Vector spaces I -- 41. Vector spaces II -- 42. Field extensions and Kronecker's theorem -- 43. Algebraic field extensions -- 44. Finite extensions and constructibility revisited -- 45. The splitting field -- 46. Finite fields -- 47. Galois groups -- 48. The fundamental theorem of Galois theory -- 49. Solving polynomials by radicals.

"As stated in the title, this book is designed for a first course. It requires only a typical calculus sequence as a prerequisite and does not assume any familiarity with linear algebra or complex number."--BOOK JACKET.

There are no comments on this title.

to post a comment.
Share